

Issue Date: Ref. Report No. November 13, 2020 ISL-20LE888FB

Product Name	: SWITCHING POWER SUPPLY
Model(s)	: HWU18A-120 N
Brand	: poconex
Applicant	: Poconex Electronics Corp.
Address	: 9F-10, No.12, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 806, Taiwan

We, International Standards Laboratory Corp., hereby certify that:

The sample ISL received which bearing the trade name and model specified above has shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified. (refer to Test Report if any modifications were made for compliance). And Our laboratories is the accredited laboratories and are approved according to ISO/IEC 17025.

HC

Standards:

FCC CFR Title 47 Part 15 Subpart B: Section 15.107 and 15.109 ANSI C63.4-2014 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 6: 2016 Class B

Tel: 886-3-407-1718; Fax: 886-3-407-1738

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The determination of the test results is determined by customer agreement, regulations or standard document specifications.

The Laboratory evaluates measurement inaccuracies based on regulatory or standard document specifications and is listed in the report for reference. The quantitative project part judges the conformity of the test results based on the evaluation results of the standard cited uncertainty, and the qualitative project does not temporarily evaluate the measurement uncertainty.

Angus Onu

Angus Chu / Director

International Standards Laboratory Corp. LT Lab.: No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan

Supplier's Declaration of Conformity

This device complies with Part 15 of the FCC Rules. The test result has been shown in the ISL test report with number ISL-20LE888FB. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Product Name:	SWITCHING POWER SUPPLY
Model(s):	HWU18A-120 N
Brand:	poconex
Name of Responsible Party:	Poconex Electronics Corp.
Address of Responsible Party:	9F-10, No.12, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 806, Taiwan
Phone No.:	+886-7-9756668
Fax No.:	+886-7-9756669

We, Poconex Electronics Corp., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable FCC Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the Commissions requirements.

Poconex Electronics Corp. Issue Date: November 13, 2020

Remarks: 1) The responsible party for Supplier's Declaration of Conformity must be located within the United States, 2) The above is a sample of SDoC, one should modify it to meet remark 1 requirement.

FCC TEST REPORT

CFR 47 Part 15 Subpart B Class B

Application Type: Supplier's Declaration of Conformity

Product: SWITCHING POWER SUPPLY

Model(s): HWU18A-120 N

Brand: **poconex**

Applicant: Poconex Electronics Corp.

Address: 9F-10, No.12, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 806, Taiwan

Test Performed by: **International Standards Laboratory Corp.** <LT Lab.> *Address: No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-20LE888FB Issue Date : November 13, 2020

This report totally contains 21 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

A test report bearing the term and/or symbol shall include a statement that the report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

Contents of Report

1. General	1
1.1 Certification of Accuracy of Test Data	1
1.2 Description of EUT	2
1.3 Description of Support Equipment	3
1.4 I/O Cable Condition of EUT and Support Units	3
2. Power Line Conducted Emissions	4
2.1 Test Setup and Procedure	4
2.1.1 Test Setup	4
2.1.2 Test Procedure	4
2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	4
2.2 Conduction Test Data: Configuration 1	5
2.3 Test Setup Photo	7
3. Radiated Emissions	9
3.1 Test Setup and Procedure	9
3.1.1 Test Setup	9
3.1.2 Test Procedure	. 11
3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)	. 11
3.2 Radiation Test Data: Configuration 1	.12
3.3 Test Setup Photo	.14
4. Appendix	15
4.1 Appendix A: Warning Labels	15
4.2 Appendix B: Warning Statement	.16
4.3 Appendix C: Test Equipment	.17
4.3.1 Test Equipment List	.17
4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	. 17
4.4 Appendix D: Uncertainty of Measurement	18
4.5 Appendix E: Photographs of EUT Please refer to the File of ISL-20LE888P	. 19

1. General

1.1 Certification of Accuracy of Test Data

Standards:	FCC CFR Title 47 Part 15 Subpart B: Section 15.107 and 15.109 ANSI C63.4-2014 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 6: 2016 Class B
Equipment Tested:	SWITCHING POWER SUPPLY
Model:	HWU18A-120 N
Brand:	poconex
Applicant:	Poconex Electronics Corp.
Sample received Date:	October 30, 2020
Final test Date:	refer to the date of test data
Test Site:	Chamber 12; Conduction 03
Test Distance:	10m
Temperature:	refer to each site test data
Humidity:	refer to each site test data
Input power:	Conduction input power: AC 120 V / 60 Hz
	Radiation input power: AC 120 V / 60 Hz
Test Result:	PASS
Report Engineer:	Cheryl Tung
Test Engineer:	

Marcin Lin.

Martin PM Lin

Approved By:

Benson Chen

Benson Chen / Associate Director

1.2 Description of EUT

EUT

Description	SWITCHING POWER SUPPLY			
Condition	Pre-Production			
Model	HWU18A-120 N			
Serial Number	N/A			
Highest working frequency	<108MHz			
The radiation test should be tested till 1GHz				

Output and input features:

Model Name	Input / Output
HWI118A 120 N	Input: 100-240 Vac, 50-60 Hz, 0.5A
HW018A-120 N	Output: 12Vdc, 1.5A

Test configurations:

Configuration Model		Input voltage	Mode	
1	HWU18A-120 N	AC 120V/60Hz	Full load	

EMI Noise Source:

Refer to the photo	Factory	Model	Point
EUT-7	SUZHOU YANG-CHI ELECTRONICS CO., LTD. JET SIGNAL INDUSTRIES CO., LTD.	JS20SW217	T1

EMI Solution: NA

1.3 Description of Support Equipment

No	Unit	Model/Serial No.	Brand	Power Cord	FCC ID
1	Load	N/A S/N:N/A	N/A	N/A	N/A

1.4 I/O Cable Condition of EUT and Support Units

Description	Path	Length	Shielding	Core	Remark
DC Power Cable	EUT DC output cable to load	1.2m	No	No	No

2. Power Line Conducted Emissions

2.1 Test Setup and Procedure

2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured. All of the interface cables were manipulated according to ANSI C63.4 requirements.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150kHz~30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9kHz

- Line

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	2.442	27.86	17.24	9.69	37.55	56.00	-18.45	26.93	46.00	-19.07
2	2.562	27.82	17.29	9.70	37.52	56.00	-18.48	26.99	46.00	-19.01
3	2.850	29.09	17.88	9.71	38.80	56.00	-17.20	27.59	46.00	-18.41
4	2.974	29.70	18.73	9.71	39.41	56.00	-16.59	28.44	46.00	-17.56
5	3.082	31.36	20.30	9.71	41.07	56.00	-14.93	30.01	46.00	-15.99
6	3.206	30.97	20.58	9.71	40.68	56.00	-15.32	30.29	46.00	-15.71
7	3.346	29.78	19.04	9.72	39.50	56.00	-16.50	28.76	46.00	-17.24
8	18.250	30.55	23.88	9.94	40.49	60.00	-19.51	33.82	50.00	-16.18

Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

The CISPR 22 limits would be applied to all FCC Part 15 devices.

International Standards Laboratory Corp.

Report Number: ISL-20LE888FB

- Neutral

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	47.40	29.37	9.66	57.06	66.00	-8.94	39.03	56.00	-16.97
2	2.646	30.05	18.09	9.73	39.78	56.00	-16.22	27.82	46.00	-18.18
3	2.870	30.41	19.49	9.74	40.15	56.00	-15.85	29.23	46.00	-16.77
4	3.038	30.60	19.25	9.74	40.34	56.00	-15.66	28.99	46.00	-17.01
5	3.114	30.86	19.03	9.74	40.60	56.00	-15.40	28.77	46.00	-17.23
6	3.278	30.60	19.83	9.75	40.35	56.00	-15.65	29.58	46.00	-16.42
7	3.362	30.39	18.90	9.75	40.14	56.00	-15.86	28.65	46.00	-17.35

Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

The CISPR 22 limits would be applied to all FCC Part 15 devices.

International Standards Laboratory Corp.

Report Number: ISL-20LE888FB

2.3 Test Setup Photo

Front View

Back View

3. Radiated Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

The 3dB beam width of the horn antenna used for the test is as shown in the table below. 1GHz~18GHz

Frequency GHz	F-plane	H-nlane	θ_{3dB} (min)	d= 3 m
Trequency OTIZ	L-plane	11-plane	- Sub (min)	w (m)
1	88°	147°	88°	5.79
2	68°	119°	68°	4.04
3	73°	92°	73°	4.44
4	70°	89°	70°	4.20
5	55°	60°	55°	3.12
6	63°	62°	62°	3.60
7	48°	49°	48°	2.67
8	39°	46°	39°	2.12
9	32°	42°	32°	1.72
10	30°	39	30°	1.61

Fraguerov CHz	E plana	H plana	$\theta_{2} d \mathbf{P} (\dots \dots)$	d= 3 m
Frequency OTZ	E-plane	11-plane	(min)	w (m)
11	32°	35°	32°	1.72
12	35°	32°	35°	1.89
13	34°	31°	31°	1.66
14	32°	27°	27°	1.44
15	36°	26°	26°	1.39
16	40°	28°	28°	1.50
17	43°	26°	26°	1.39
18	41°	22°	22°	1.17

18 GHz~26.5 GHz

Engine av CII-	E alana	II nlana		d= 1 m	d= 3 m
Frequency GHZ	E-plane	п-ріапе		w (m)	w (m)
18	11.4°	12.7°	11.4°	0.199	0.598
19	10.9°	12.4°	10.9°	0.190	0.572
20	10.8°	12.4°	10.8°	0.189	0.567
21	9.8°	12°	9.8°	0.171	0.514
22	9.7°	11°	9.7°	0.169	0.509
23	10°	11.8°	10°	0.174	0.524
24	9°	11°	9°	0.157	0.472
25	10°	12.3°	10°	0.174	0.524
26	9.9°	11.1°	9.9°	0.173	0.519
26.5	9.4°	11.3°	9.4°	0.164	0.493

26 GHz~40 GHz

Enormous CII-	E mlama	II mlama	$\theta_{\rm D,dD}$ ()	d= 1 m	d= 3 m
Frequency GHZ	E-plane	п-ріапе		w (m)	w (m)
26	12°	12.2°	12°	0.210	0.631
27	13°	10.5°	10.5°	0.184	0.551
28	13.2°	12.3°	12.3°	0.216	0.647
29	11.5°	12.8°	11.5°	0.201	0.604
30	12°	8°	8°	0.140	0.420
31	11.5°	10.1°	10.1°	0.177	0.530
32	11.8°	10°	10°	0.175	0.525
33	11.8°	9.5°	9.5°	0.166	0.499
34	11.6°	10°	10°	0.175	0.525
35	10.9°	9.8°	9.8°	0.171	0.514
36	11.8°	8.6°	8.6°	0.150	0.451
37	12.9°	10.5°	10.5°	0.184	0.551
38	12°	10.3°	10.3°	0.180	0.541
39	11.8°	9.8°	9.8°	0.171	0.514
40	12.5°	11.2°	11.2°	0.196	0.588

3.1.2 Test Procedure

The radiated emissions test will then be repeated on the chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 40 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the antenna in the cone of radiation from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response. At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to ANSI C63.4 requirements.

The highest internal source of the EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less.

3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz
Frequency Range:	Above 1000MHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

3.2 Radiation Test Data: Configuration 1

- Radiated Emissions (Horizontal)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	38.73	34.81	-17.17	17.64	30.00	-12.36	400	355	peak
2	106.63	37.32	-20.06	17.26	30.00	-12.74	400	57	peak
3	149.31	31.18	-15.88	15.30	30.00	-14.70	300	287	peak
4	267.65	32.00	-15.59	16.41	37.00	-20.59	400	106	peak
5	913.67	29.68	-2.82	26.86	37.00	-10.14	400	271	peak
6	974.78	29.48	-1.81	27.67	37.00	-9.33	100	164	peak

* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 10 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory Corp.

Report Number: ISL-20LE888FB

-Radiated Emissions (Vertical)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	39.70	43.91	-17.25	26.66	30.00	-3.34	100	3	peak
2	47.46	41.63	-16.75	24.88	30.00	-5.12	100	316	peak
3	63.95	39.26	-17.66	21.60	30.00	-8.40	300	326	peak
4	106.63	39.62	-20.06	19.56	30.00	-10.44	147	360	peak
5	131.85	40.66	-17.10	23.56	30.00	-6.44	200	298	peak
6	217.21	34.53	-18.37	16.16	30.00	-13.84	100	177	peak

* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 10 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

3.3 Test Setup Photo

Front View (30MHz~1GHz)

Back View (30MHz~1GHz)

4. Appendix

4.1 Appendix A: Warning Labels

Label Requirements

A Class B digital device subject to authorization under Supplier's Declaration of Conformity of FCC shall carry a label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Devices subject to authorization under Supplier's Declaration of Conformity may be labeled with FCC logo on a voluntary basis as a visual indication that the product complies with the applicable FCC requirements

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

When the device is so small or for such use that it is impracticable to label it with the statement specified under (§15.19 Labeling requirements) paragraph (a) of this section in a font that is four-point or larger, and the device does not have a display that can show electronic labeling, then the information required by this paragraph shall be placed in the user manual and must also either be placed on the device packaging or on a removable label attached to the device.

4.2 Appendix B: Warning Statement

Statement Requirements

The operators' manual for a Class B digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.
- Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operator's manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

4.3 Appendix C: Test Equipment

4.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Con03					Date	Date
Conduction 03	EMI Receiver 15	ROHDE &	ESCI	101166	07/29/2020	07/29/2021
		SCHWARZ				
Conduction 03	LISN 19	R&S	ENV216	101425	11/05/2019	11/05/2020
Conduction 03	LISN 22	R&S	ENV216	101478	08/10/2020	08/10/2021
Conduction 03	Conduction 04-3	WOKEN	CFD 300-NL	conduction	09/07/2020	09/07/2021
	Cable			04-3		

Location Chmb12	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal. Date
Radiation (Chamber12)	BILOG Antenna 18	Schwarzbeck	Schwarzbeck VULB 9168+EMCI-N -6-05	646	02/18/2020	02/18/2021
Radiation (Chamber12)	Preamplifier 26	EMCI	EMC9135	980297	02/21/2020	02/21/2021
Radiation (Chamber12)	Coaxial Cable Chmb 12-10M-01	PEWC	CFD400-NL	Chmb 12-10M-01	10/14/2020	10/14/2021
Radiation (Chamber12)	EMI Receiver 19	ROHDE & SCHWARZ	ESR 3	102460	08/04/2020	08/04/2021

4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Site	Filename	Version	Issue Date
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013

4.4 Appendix D: Uncertainty of Measurement

The laboratory measurement uncertainty accordance with refers to CISPR 16-4-2. If Ulab is less than or equal to Ucispr in Table 1, then the test report may either state the value of Ulab or state that Ulab is less than Ucispr.

The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 03> AMN: ±2.90dB

<Chamber 12 (10M)> Horizontal 30MHz~200MHz: ±4.14dB 200MHz~1000MHz: ±4.12dB Vertical 30MHz~200MHz: ±4.30dB 200MHz~1000MHz: ±4.45dB

4.5 Appendix E: Photographs of EUT

Please refer to the File of ISL-20LE888P